

Leveraging Behavioral Game Theory for the Study of International Relations

Capt William N. Caballero

The Cuban Missile Crisis

What if....

...would history have been different?

- Qualitative Limitations
 - Traditional models of deterrence are indifferent to temperament, intellect, background, biases, etc.
 - Humans known to be overconfident, emotional, and vulnerable to perceptual errors
 - Mental Illness
 - 27% of EU has suffered from mental disorder (Davidson, 2006)
 - ~49% of US presidents between 1776-1974 suffered from disorder (e.g., depression, alcoholism, etc.)
 - Quantitative Limitations
 - Equilibrium concepts built upon self-interest <u>and</u> *mutual* consistency (i.e., based upon accurate beliefs of what adversaries actually do)
 - Assumed to reason to equilibrium profile immediately
 - What about learning?

- Modeled upon step-by-step reasoning
 - Shown to empirically describe behavior in many games
- Players are *k*-step thinkers according to a Poission(τ) probabilistic density, *f*
 - A *k*-step player is overconfident and doesn't realize players can think as strategically as they do
 - Beliefs formed about other players "accurately" by normalizing the true distribution as appropriate
- Each k-step player best responds to who he believes his opponents are
 - 0-step thinkers assumed to randomize equally
 - Solved recursively by calculating 1-step players best response to 0step, and continuing until some large k

 Players make decisions based upon (1) accumulated experience, and (2) attraction toward a given strategy

Experience of player <i>i</i>	$N_i(t) = \phi_i(1 - \kappa_i)N_i(t - 1) + 1, \qquad t \ge 1.$
Attraction of player <i>i</i> to strategy <i>j</i>	$A_{i}^{j}(t) = \frac{\phi_{i}N_{i}(t-1)A_{i}^{j}(t-1) + \left[\delta_{i} + (1-\delta_{i})I(s_{i}^{j}, s_{i}(t))\right]\pi_{i}(s_{i}^{j}, s_{-i}(t))}{N(t)}$
Probability player <i>i</i> plays strategy <i>j</i>	$P_i^j(t+1) = \frac{e^{\lambda A_i^j(t)}}{\sum_{k=1} m_i \lambda A_i^k(t)}$

- Initial variables for attraction and experience seeded
 - Usually informed with the Cognitive Hierarchy model
 - Insight can be gained via many simulation runs

Cognitive Hierarchy Analysis

Converges to MNE as τ increases

Probability of War may <u>increase</u> as a population of players begins to think <u>more</u> strategically

EWA Analysis ۲

Players learn to play one of the two pure Nash equilibrium

BGT methods may distinguish between the Nash equilibriums!

Preemptive War Game

Attack

-1,4

(0,0)

Prisoner Dilemma Game

No Attack

(3,3)

4,-1

No Attack Attack

Assurance Game Variant

	No Attack	Attack
No Attack	(8,8)	(1,3)
Attack	(3,1)	(2,2)

But... did USSR and US actually value collective peace more?

D-Day (Matching Pennies) Game

		Germans		
		Calais	Normandy	Brittany
	Calais	(0,1)	(1,0)	(1,0)
Allies	Normandy	$(1-c_N,0)$	$(-c_N, 1)$	$(1-c_N,0)$
	Brittany	$(1-c_B,0)$	$(1-c_B,0)$	$(-c_B, 1)$

 $c_N = 0.25$ and $c_B = 0.4$

Cognitive Hierarchy Analysis

Cognitive Hierarchy Analysis (continued)

As τ increases, we are not approaching the NE (strict)...

How can such irregular behavior be utilized to inform policy?

- Behavioral theories coincide with the intuition of tailored deterrence – specifics of adversary matter
 - But BGT provides less definite predictions of adversary behavior than perfect rationality analysis
 - What is τ for the population of a given nation's leadership?
 - What are the appropriate EWA parameters?
- As, the defining BGT parameters are uncertain, the construction of "optimal" policies is not possible
 - Instead, "robust" policies should be pursued utilizing robust optimization, stochastic programming, or distributionally robust optimization techniques

D-Day Game Revisited

		Germans		
		Calais	Normandy	Brittany
	Calais	(0,1)	(1,0)	(1,0)
Allies	Normandy	$(1-c_N,0)$	$(-c_N, 1)$	$(1-c_N,0)$
	Brittany	$(1-c_B,0)$	$(1-c_B,0)$	$(-c_B, 1)$

 Assume τ equal to 0, 1, 2, 3, 4 or 5, then a large Mstep thinker infers the following payoffs

τ	Expected Value of Calais	Expected Value of Normandy	Expected Value of Brittany
0	0.667	0.417	0.267
1	0.491	0.505	0.355
2	0.271	0.615	0.465
3	0.318	0.499	0.534
4	0.432	0.348	0.570
5	0.629	0.135	0.587

Attacking Calais is the robust decision

*Minimum possible payoff for each attack

• However, this assumes we have no information regarding the probability τ assumes any integer 0-5

D-Day Game Revisited

		Germans		
		Calais	Normandy	Brittany
	Calais	(0,1)	(1,0)	(1,0)
Allies	Normandy	$(1-c_N,0)$	$(-c_N, 1)$	$(1-c_N,0)$
	Brittany	$(1-c_B,0)$	$(1-c_B,0)$	$(-c_B, 1)$

• If we had the following distribution over τ

τ	Probability
0	0.05
1	0.10
2	0.50
3	0.25
4	0.05
5	0.05

• The potential expected payoffs for the attacks

Expected	Expected	Expected
Value of	Value of	Value of
Calais	Normandy	Brittany
0.350	0.528	0.472

Attacking Normandy yields the maximum expected payoff

D-Day Game Revisited

		Germans		
		Calais	Normandy	Brittany
	Calais	(0,1)	(1,0)	(1,0)
Allies	Normandy	$(1-c_N, 0)$	$(-c_N, 1)$	$(1-c_N,0)$
	Brittany	$(1-c_B,0)$	$(1-c_B,0)$	$(-c_B, 1)$

• If we had the following set of distributions over τ

τ	Probability Distribution 1	Probability Distribution 2	Probability Distribution 3
0	0.05	0.10	0.05
1	0.10	0.05	0.05
2	0.50	0.30	0.20
3	0.25	0.25	0.20
4	0.05	0.1	0.40
5	0.05	0.2	0.1

· The potential payoffs for each decision are

	Expected	Expected	Expected
Probability	Value of	Value of	Value of
Distribution	Calais	Normandy	Brittany
1	0.350	0.528	0.472
2	0.421	0.438	0.491
3	0.411	0.422	0.517

Attacking Brittany is the distributionally robust decision

*Minimum expected value for each attack

- How do group dynamics affect behavioral theories?
- Do the high stakes of national security games affect BGTs?
 - LeVeck, Brad L, D. Alex Hughes, James H Fowler, Emilie Hafner-Burton, and David G Victor. 2014. "The Role of Self-interest in Elite Bargaining," 111:18536– 18541. 52.
- Does culture induce significant behavioral changes?
 - Camerer, Colin F. 2011. Behavioral Game Theory: Experiments in Strategic Interaction. Princeton University Press, Princeton, NJ.
- How do the conclusions of classic IR models change when approached from a behavioral lens?
 - Fearon, James D. 1994. "Domestic Political Audiences and the Escalation of International Disputes." *American Political Science Review* 88 (3): 577–592.
 - Kydd, Andrew H. 2007. Trust and Mistrust in International Relations. Princeton University Press, Princeton, NJ.

Questions?